880 research outputs found

    Gallium Arsenide Monolithic Optoelectronic Circuits

    Get PDF
    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate

    Be-implanted (GaAl)As stripe geometry lasers

    Get PDF
    GaAl)As double-heterostructure stripe geometry lasers have been fabricated using Be ion implantation. Pulsed threshold currents as low as 21 mA have been found. The light-vs-current characteristics were kink-free up to 10 mW output power and the measured differential quantum efficiency was 45%

    A monolithically integrated optical repeater

    Get PDF
    A monolithically integrated optical repeater has been fabricated on a single-crystal semi-insulating GaAs substrate. The repeater consists of an optical detector, an electronic amplifier, and a double heterostructure crowding effect laser. The repeater makes use of three metal semiconductor field effect transistors, one of which is used as the optical detector. With light from an external GaAlAs laser incident on the detector, an overall optical power gain of 10 dB from both laser facets was obtained

    Strategies for protecting intellectual property when using CUDA applications on graphics processing units

    Get PDF
    Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering

    The GaAs solar cells with V-grooved emitters

    Get PDF
    Geometrically structured surfaces have become increasingly important to solar cell efficiency improvements and radiation tolerance. Gallium arsenide solar cells with a V-grooved front surface which demonstrate improved optical coupling and higher short-circuit current compared to planar cells were fabricated. GaAs homojunction cells were fabricated by organometallic chemical vapor deposition (OMCVD) on an n+ substrate. The V-grooves were formed on the surface with an anisotropic etch, and an n-type buffer and p-type emitter were grown by OMCVD, followed by ohmic contacts. Reflectivity measurements show significantly lower reflectance for the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell is consistently higher than that of the planar controls

    A V-grooved GaAs solar cell

    Get PDF
    V-grooved GaAs solar cells promise the benefits of improved optical coupling, higher short-circuit current, and increased tolerance to particle radiation compared to planar cells. A GaAs homojunction cell was fabricated by etching a V-groove pattern into an n epilayer (2.1 x 10 to the 17th power per cu cm) grown by metalorganic chemical vapor deposition (MOCVD) on an n+ substrate (2.8 x 10 to the 18th power per cu cm) and then depositing and MOCVD p epilayer (4.2 x 10 to the 18th power per cu cm). Reflectivity measurements on cells with and without an antireflective coating confirm the expected decrease in reluctance of the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell was 13 percent higher than that of the planar control

    Peeled film GaAs solar cells for space power

    Get PDF
    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg

    Gallium Arsenide Monolithic Optoelectronic Circuits

    Get PDF
    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate
    corecore